Zhang Luchan
  • Educational level:

  • Professional titles: Assistant professor

  • Telephone:17665237037

  • Email:zhanglc@szu.edu.cn

  • Address:403

Educational level Professional titles Assistant professor
Professional titles 17665237037 Email zhanglc@szu.edu.cn
Address 403 Personal Profile
Educational experience Work experience
Research Field Mathematical modeling and numerical simulation calculations in materials science Honors obtained
Academic Programs Scientific research [1] L.C. Zhang, J. Han, Y. Xiang, and D. J. Srolovitz, Equation of motion for a grain boundary, Physical Review Letters, 119, 246101, 2017.  
[2] L.C. Zhang, Y.J. Gu, and Y. Xiang, Energy of low angle grain boundaries based on continuum dislocation structure, Acta Materialia, 126, 11-24, 2017.  
[3] L.C. Zhang and Y. Xiang, Motion of grain boundaries incorporating dislocation structure, Journal of the Mechanics and Physics of Solids, 117, 157-178, 2018.  
[4] L.C. Zhang, J. Han, Y. Xiang, and D. J. Srolovitz, The effect of randomness on the strength of high-entropy alloys, Acta Materialia, 166, 424-434, 2019.  
[5] C.Z. Wei, L.C. Zhang, J. Han, D.J. Srolovitz and Y. Xiang, Grain boundary triple junction dynamics: a continuum disconnection model, SIAM Journal on Applied Mathematics, 80, 1101-1122, 2020.  
[6] L.C. Zhang and Y. Xiang, A new formulation of coupling and sliding motions of grain boundaries based on dislocation structure, SIAM Journal on Applied Mathematics, 80(6), 2365–2387, 2020.  
[7] T.P. Jiang, Y. Xiang and L.C. Zhang, Stochastic Peierls-Nabarro model for dislocations in high entropy alloys, SIAM Journal on Applied Mathematics, 80(6), 2496-2517, 2020.  
[8] L.C. Zhang, X.X. Qin and Y. Xiang, Continuum model for dislocation structures of semicoherent interfaces, Computational Materials Science, 190, 110277, 2021.
[9] L.C. Zhang, J. Han, Y. Xiang, and D. J. Srolovitz, Equation of Motion for Grain Boundaries in Polycrystals, npj Computational Materials, 7, 64, 2021.
[10] X.X. Qin, Y.J.Gu, L.C. Zhang and Y. Xiang, Continuum model and numerical method for dislocation structure and energy of grain boundaries, Multiscale Modeling and Simulation, 20(1), 323-348, 2022.

Personal Profile

Dr Zhang Luchan's main research interests are mathematical modeling and numerical simulation in materials science, the research work mainly focuses on solving the problems of the defects (dislocations, grain boundaries) in the equilibrium state and the dynamic multi-scale calculation by mathematical modeling and numerical simulation, based on the numerical simulation results, the influence of the structure on the motion and energy of the defect is analyzed, and the related properties of the actual material are predicted. He has published in Siam Journal on Applied Mathematics, Physical Review Letters, ACTA materials, Journal of the Mechanics and Physics of Solids and other international academic journals. He has previously chaired the General Research Fund of the Hong Kong Research Grants Council (completed) , and is currently the director of the National Natural Science Foundation of China Youth Foundation, Shenzhen Peacock Project high-level talent Research funding.

Educational experience

Work experience

Research Field

  • Mathematical modeling and numerical simulation calculations in materials science

Honors obtained

Academic Programs

Scientific research

  • [1] L.C. Zhang, J. Han, Y. Xiang, and D. J. Srolovitz, Equation of motion for a grain boundary, Physical Review Letters, 119, 246101, 2017. [2] L.C. Zhang, Y.J. Gu, and Y. Xiang, Energy of low angle grain boundaries based on continuum dislocation structure, Acta Materialia, 126, 11-24, 2017. [3] L.C. Zhang and Y. Xiang, Motion of grain boundaries incorporating dislocation structure, Journal of the Mechanics and Physics of Solids, 117, 157-178, 2018. [4] L.C. Zhang, J. Han, Y. Xiang, and D. J. Srolovitz, The effect of randomness on the strength of high-entropy alloys, Acta Materialia, 166, 424-434, 2019. [5] C.Z. Wei, L.C. Zhang, J. Han, D.J. Srolovitz and Y. Xiang, Grain boundary triple junction dynamics: a continuum disconnection model, SIAM Journal on Applied Mathematics, 80, 1101-1122, 2020. [6] L.C. Zhang and Y. Xiang, A new formulation of coupling and sliding motions of grain boundaries based on dislocation structure, SIAM Journal on Applied Mathematics, 80(6), 2365–2387, 2020. [7] T.P. Jiang, Y. Xiang and L.C. Zhang, Stochastic Peierls-Nabarro model for dislocations in high entropy alloys, SIAM Journal on Applied Mathematics, 80(6), 2496-2517, 2020. [8] L.C. Zhang, X.X. Qin and Y. Xiang, Continuum model for dislocation structures of semicoherent interfaces, Computational Materials Science, 190, 110277, 2021. [9] L.C. Zhang, J. Han, Y. Xiang, and D. J. Srolovitz, Equation of Motion for Grain Boundaries in Polycrystals, npj Computational Materials, 7, 64, 2021. [10] X.X. Qin, Y.J.Gu, L.C. Zhang and Y. Xiang, Continuum model and numerical method for dislocation structure and energy of grain boundaries, Multiscale Modeling and Simulation, 20(1), 323-348, 2022.
Baidu
sogou