Zeng Jinsong
  • Educational level:

  • Professional titles: Associate Professor

  • Telephone:

  • Email:jinsongzeng@163.com

  • Address:Room 1411, Huiwen Building

Educational level Professional titles Associate Professor
Professional titles Email jinsongzeng@163.com
Address Room 1411, Huiwen Building Personal Profile
Educational experience Work experience
Research Field Complex power system Honors obtained
Academic Programs Scientific research [1] P. Roesch, Y. Yin and J. Zeng, Rigidity of non-renormalizable Newton maps, to appear in SCIENCE CHINA Mathematics, 2023</br>

[2] G. Cui, Y. Gao and J. Zeng, Invariant graphs of rational maps. Advances in Mathematics, 404(2022), 50pp</br>
[3] Y. Gao, L. Yang and J. Zeng, Subhyperbolic rational maps on boundaries of hyperbolic components. Discrete Contin. Dyn. Syst. 42 (2022), no. 1, 319–326.</br>
[4] X.Wang, Y.Yin and J. Zeng, Dynamics of Newton maps. Ergodic Theory and Dynamical Systems, 46pp, published online, 2021, doi:10.1017/etds.2021.168</br>
[5] J. Zeng, Criterion for rays landing together. Trans. Amer. Math. Soc. 373(2020), no.9, 6479-6502</br>

[6] W. Qiu, F. Yang and J. Zeng, Quasisymmetric geometry of Sierpiński carpet Julia sets. Fundamenta Mathematicae, 244 (2019), no. 1, 73– 107.</br>
[7] Y. Gao and J. Zeng, The landing of parameter rays at non-recurrent critical portraits. Sci. China Math. 61(2018),no. 12, 2267–2282.</br>
[8] Y.Gao, P. Haïssinsky, D.Meyer and J. Zeng, Invariant Jordan curves of Sierpiński carpet rational maps. Ergodic Theory Dynam. Systems 38(2018),no. 2, 583–600.</br>
[9] Y.Gao,J. Zeng and S. Zhao, A characterization of Sierpiński carpet rational maps. Discrete Contin. Dyn. Syst. 37(2017),no. 9, 5049–5063

Personal Profile

Zeng Jinsong

Educational experience

Work experience

Research Field

  • Complex power system

Honors obtained

Academic Programs

Scientific research

  • [1] P. Roesch, Y. Yin and J. Zeng, Rigidity of non-renormalizable Newton maps, to appear in SCIENCE CHINA Mathematics, 2023
    [2] G. Cui, Y. Gao and J. Zeng, Invariant graphs of rational maps. Advances in Mathematics, 404(2022), 50pp
    [3] Y. Gao, L. Yang and J. Zeng, Subhyperbolic rational maps on boundaries of hyperbolic components. Discrete Contin. Dyn. Syst. 42 (2022), no. 1, 319–326.
    [4] X.Wang, Y.Yin and J. Zeng, Dynamics of Newton maps. Ergodic Theory and Dynamical Systems, 46pp, published online, 2021, doi:10.1017/etds.2021.168
    [5] J. Zeng, Criterion for rays landing together. Trans. Amer. Math. Soc. 373(2020), no.9, 6479-6502
    [6] W. Qiu, F. Yang and J. Zeng, Quasisymmetric geometry of Sierpiński carpet Julia sets. Fundamenta Mathematicae, 244 (2019), no. 1, 73– 107.
    [7] Y. Gao and J. Zeng, The landing of parameter rays at non-recurrent critical portraits. Sci. China Math. 61(2018),no. 12, 2267–2282.
    [8] Y.Gao, P. Haïssinsky, D.Meyer and J. Zeng, Invariant Jordan curves of Sierpiński carpet rational maps. Ergodic Theory Dynam. Systems 38(2018),no. 2, 583–600.
    [9] Y.Gao,J. Zeng and S. Zhao, A characterization of Sierpiński carpet rational maps. Discrete Contin. Dyn. Syst. 37(2017),no. 9, 5049–5063
Baidu
sogou